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Abstract
Quantum monodromy matrices coming from a theory of two coupled (m)KdV
equations are modified in order to satisfy the usual Yang–Baxter relation. As
a consequence, a general connection between braided and unbraided (usual)
Yang–Baxter algebras is derived and also analysed.

PACS numbers: 11.30.-j, 02.20.-a, 02.40.-k, 03.50.-z

1. Preliminaries

The Yang–Baxter relation for the monodromy matrix of a quantum system ([1,2] and references
within) characterizes the integrability of the system. Indeed, this relation encodes a quantum
group symmetry [3,4], i.e. an infinite-dimensional deformed Lie algebra including the Abelian
conserved quantities—which enables the system to be à la Liouville integrable—as a Cartan
subalgebra. In some interesting cases this very rich structure seems to be missing because
of non-ultralocal commutation relations between the fundamental variables (or fields) of the
theory. Nevertheless, a suitable modification of the Yang–Baxter relation was discovered
to hold and to still ensure the Liouville integrability: the so-called braided Yang–Baxter
relation [5–7]. However, this relation is substantially different from the usual Yang–Baxter
relation and without obvious links to it.

Within the huge variety of integrable non-ultralocal theories the prototype is the very
interesting case of the quantum (modified) KdV ((m)KdV) system, which gives [8–10] an
alternative description of the minimal conformal field theories (CFTs) [11]. The associated
lattice monodromy matrix verifies the braided version of the Yang–Baxter relation [6] and
the transfer matrix can be diagonalized by means of a generalization of the algebraic Bethe
ansatz method [7]. If a left theory of this kind is properly coupled to a right theory, the resulting
monodromy matrix still satisfies the braided Yang–Baxter relation and was conjectured in [7] to
give, on a cylinder, an alternative description of minimal CFTs perturbed by the �1,3 primary
operator [12]. On the plane these theories are also described as suitable restrictions of the
sine-Gordon theory [13], which, in contrast, exhibits a Yang–Baxter relation [1].
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In this letter we will address the very natural question of the connection between the
braided and the usual Yang–Baxter relation. We will use as examples the cases described in the
previous paragraph and involving the lattice (m)KdV theory as the main ingredient. Actually,
in what follows we will show that our treatment is completely general. We will conclude the
letter by proposing a new factorized monodromy matrix verifying the Yang–Baxter relation.

In a previous paper [7] we considered two copies of the modified KdV equation:

∂τ v = 3
2v

2v′ + 1
4v
′′′ ∂τ̄ v̄ = 3

2 v̄
2v̄′ + 1

4 v̄
′′′ (1.1)

where v ≡ −ϕ′ and v̄ ≡ −ϕ̄′ are the spatial derivatives of quasi-periodic Darboux fields defined
on the interval y, ȳ ∈ [ 0, R ]. The quantizations of the Darboux fields are the Feigin–Fuks
bosons [14] which satisfy the commutation relations

[φ(y), φ(y ′)] = − iπβ2

2
s

(
y − y ′

R

)
[φ̄(ȳ), φ̄(ȳ ′)] = iπβ2

2
s

(
ȳ − ȳ ′

R

)
(1.2)

where β2 > 0 and s(z) is the quasi-periodic extension of the sign function:

s(z) = 2n + 1 n < z < n + 1 s(n) = 2n n ∈ Z. (1.3)

In terms of a discretization of the Feigin–Fuks bosons, φm ≡ φ
(
m R

2N

)
, φ̄m ≡ φ̄

(
m R

2N

)
, we

defined the N -periodic operators V ±m living on a N -site lattice with spacing � and length
R = N�:

V −m ≡ 1
2 [(φ2m−1 − φ2m+1) + (φ2m−2 − φ2m)− (φ̄2m−1 − φ̄2m+1) + (φ̄2m−2 − φ̄2m)] (1.4)

V +
m ≡ 1

2 [(φ̄2m−1 − φ̄2m+1) + (φ̄2m−2 − φ̄2m)− (φ2m−1 − φ2m+1) + (φ2m−2 − φ2m)]. (1.5)

These operators are the quantum counterparts of the discretization of the mKdV variables v

and v̄ (1.1). The exponential operators W±m ≡ eiV ±m satisfy, as a consequence of (1.2), the
following exchange relations, first introduced in [15] (for m = N the symbols W±N+1 should
be read as W±1 respectively):

W±m+1W
±
m = q±

1
2 W±mW±m+1 W±m+1W

∓
m = q∓

1
2 W∓mW±m+1 W +

mW
−
m = qW−mW +

m

[W�
m,W

�′
n ] = 0 if 2 � |m− n| � N − 2 ( �, �′ = ±). (1.6)

By using W±m we constructed the left and right conformal monodromy matrices

M(λ) = LN(λ) . . . L1(λ) (1.7)

M̄(λ) = L̄N(λ
−1) . . . L̄1(λ

−1) (1.8)

together with the off-critical right–left and left–right monodromy matrices, depending on a
perturbation parameter µ (N ∈ 4N)

M(λ) ≡ L̄N(µ
1
2 λ−1)L̄N−1(µ

1/2λ−1)LN−2(µ
1/2λ)LN−3(µ

1/2λ) . . .

L̄4(µ
1/2λ−1)L̄3(µ

1/2λ−1)L2(µ
1/2λ)L1(µ

1/2λ) (1.9)

M ′(λ) ≡ LN(µ
1/2λ)LN−1(µ

1/2λ)L̄N−2(µ
1/2λ−1)L̄N−3(µ

1/2λ−1) . . .

L4(µ
1/2λ)L3(µ

1/2λ)L̄2(µ
1/2λ−1)L̄1(µ

1/2λ−1). (1.10)

In these formulae left Lax operators Lm(λ) and right Lax operators L̄m(λ) are

Lm(λ) ≡
(

(W−m )−1 �λW +
m

�λ(W +
m)
−1 W−m

)
L̄m(λ) ≡

(
(W +

m)
−1 �λW−m

�λ(W−m )−1 W +
m

)
. (1.11)

The monodromy matrix (1.7) and quantum Lax operator Lm(λ) were first introduced in [6],
starting from Vm, V̄m and not from φn, φ̄n. Quantum Lax operators Lm(λ) and L̄m(λ) are
non-ultralocal, i.e. their operator entries on nearest-neighbouring sites do not commute. As
a consequence, monodromy matrices (1.7)–(1.10) satisfy braided Yang–Baxter relations, first
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introduced in complete generality in [5, 6]. For instance we have that M (1.7) satisfies (a and
b are two auxiliary spaces)

Rab

(
λ

λ′

)
Ma(λ)Z

−1
ab Mb(λ

′) = Mb(λ
′)Z−1

ba Ma(λ)Rab

(
λ

λ′

)
. (1.12)

The matrix M ′ (1.10) satisfies the same relation, while the matrices M̄ (1.8) and M (1.9)
satisfy (1.12) with Zab replaced by Z−1

ab . The usual numerical R-matrix is given by

Rab(ξ) =




1 0 0 0

0 ξ−1−ξ
q−1ξ−1−qξ

q−1−q
q−1ξ−1−qξ 0

0 q−1−q
q−1ξ−1−qξ

ξ−1−ξ
q−1ξ−1−qξ 0

0 0 0 1


 q = e−iπβ2

(1.13)

and the numerical matrix Zab = diag(q−1/2, q1/2, q1/2, q−1/2). In [7] we also showed that
generators W±m admit a realization in terms of ultralocal generators (canonical variables) xm,
pm, 1 � m � N , forming a position–momentum Heisenberg algebra

[xm, xn] = 0 [pm, pn] = 0 [xm, pn] = iπβ2

2
δm,n. (1.14)

Indeed, the operators

W±m = ei[±(xm+1−xm)−pm] (1.15)

satisfy exchange relations (1.6). Of course, the symbol xN+1 appearing in (1.15) for m = N

should be read as x1.
Using this realization we will establish a connection between the monodromy

matrices (1.7)–(1.10) satisfying braided Yang–Baxter relations and some monodromy matrices
satisfying the Yang–Baxter relation.

2. From the braided to the usual Yang–Baxter relation: conformal case

Let us rewrite the left Lax operator Lm(λ) (1.11) using the realization (1.15) for W±m . We have
that

Lm(λ) =
(

e−i(xm−xm+1−pm) �λe−i(xm−xm+1+pm)

�λei(xm−xm+1+pm) ei(xm−xm+1−pm)

)
= Dm+1Um(λ) (2.1)

where we have defined

Dm ≡
(

eixm 0
0 e−ixm

)
Um(λ) ≡

(
e−i(xm−pm) �λe−i(xm+pm)

�λei(xm+pm) ei(xm−pm)

)
. (2.2)

Of course, DN+1 = D1 in (2.1) and the matrices Dm and Um(λ) depend only on ultralocal site
variables. Therefore, we interpret formulae (2.1) as the decomposition of the Lax operator
Lm(λ) in its ultralocal components on the lattice sites.

Decomposition (2.1) implies the following form for the left monodromy matrix (1.7):

M(λ) = LN(λ)LN−1(λ) . . . L2(λ)L1(λ)

= [D1UN(λ)] [DNUN−1(λ)] . . . [D3U2(λ)] [D2U1(λ)]

= D1 [UN(λ)DN ] [UN−1(λ)DN−1] . . . [U2(λ)D2] [U1(λ)D1]D−1
1 . (2.3)

This means that the matrix

M̃(λ) ≡ D−1
1 M(λ)D1 (2.4)
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can be written as

M̃(λ) = L̃N(λ)L̃N−1(λ) . . . L̃2(λ)L̃1(λ) (2.5)

in terms of the site ultralocal operators

L̃m(λ) ≡ Um(λ)Dm. (2.6)

By using (2.2) in definition (2.6), we obtain the following expression for L̃m(λ):

L̃m(λ) = q−1/4

(
eipm �λe−i(2xm+pm)

�λei(2xm+pm) e−ipm

)
. (2.7)

From this expression and from commutation relations (1.14) it eventually follows that the
ultralocal operators L̃m(λ) fulfil the Yang–Baxter relation

Rab

(
λ

λ′

)
L̃am(λ)L̃bm(λ

′) = L̃bm(λ
′)L̃am(λ)Rab

(
λ

λ′

)
(2.8)

where the matrixRab is given by (1.13). As a consequence of the ultralocality of L̃m, we obtain
as usual that the matrix M̃ , in its turn, satisfies the Yang–Baxter relation as well:

Rab

(
λ

λ′

)
M̃a(λ)M̃b(λ

′) = M̃b(λ
′)M̃a(λ)Rab

(
λ

λ′

)
. (2.9)

Therefore, the transfer matrix τ̃ (λ) ≡ Tr M̃(λ) commutes with itself for different values of the
spectral parameter:

[τ̃ (λ), τ̃ (λ′)] = 0 (2.10)

and, as a consequence, generates infinite conserved charges in involution.

Observation. The aforementioned results of this section have been obtained using the
realization (1.15). However, the transformation of an algebra defined by the braided Yang–
Baxter relation into another algebra defined by the usual Yang–Baxter relation is more general,
as follows from the following theorem.

Theorem 1. Let M be a matrix satisfying the braided Yang–Baxter relation (1.12). If there
exists an invertible matrix D satisfying the conditions

Ma(λ) = DbMa(λ)D
−1
b Zab [DaDb,Rab(ξ)] = 0 [Da,Db] = 0 (2.11)

and if Rab and Zab entering (1.12) satisfy

ZabRab(ξ) = Rab(ξ)Zba (2.12)

then M̃(λ) = D−1M(λ)D satisfies the Yang–Baxter relation (2.9).

The proof comes from direct calculations. In the algebraic context the meaning of the
theorem is that the algebra generated by the entries of a matrix M satisfying the braided
Yang–Baxter relation (1.12), with Rab and Zab obeying (2.12), is isomorphic to the algebra
generated by the entries of the unbraided matrix M̃(λ) = D−1M(λ)D satisfying the Yang–
Baxter relation (2.9), if a matrix (of formal elements) D obeying conditions (2.11) exists:
an unbraiding isomorphism. In the (m)KdV theory (2.12) is evidently true and in the
realization (1.15) conditions (2.11) are satisfied by the matrix D1, defined in (2.2). A
still open problem concerns the possibility of choosing D in such a way that the above
isomorphism extends to the respective Hopf algebras. Let us finally remark that the most
general definition of braided Yang–Baxter algebras [5] uses two numerical matrices, Zab

and Z̃ab: the defining relation is RabZ̃
−1
ba MaZ

−1
ab Mb = Z̃−1

ab MbZ
−1
ba MaRab. However, the
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aforementioned isomorphism into a Yang–Baxter algebra exists when condition (2.12) holds
for Rab and Z̃ab and this reduces the above general defining relation to (1.12).

Let us now study in detail the invertible map from the left conformal monodromy matrix
M into the unbraided monodromy matrix M̃ . From relation (2.4) and from the definition of
D1 (2.2) it follows that the relations between the matrix elements of M and M̃:

M(λ) ≡
(
A(λ) B(λ)

C(λ) D(λ)

)
M̃(λ) ≡

(
Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
(2.13)

are the following:

A(λ) = eix1Ã(λ)e−ix1 B(λ) = eix1B̃(λ)eix1

C(λ) = e−ix1C̃(λ)e−ix1 D(λ) = e−ix1D̃(λ)eix1 . (2.14)

In order to simplify relations (2.14) we rewrite the matrix M̃ as follows:

M̃(λ) = L̃N(λ)L̃N−1(λ) . . . L̃2(λ)L̃1(λ)

= [
L̃N(λ)L̃N−1(λ) . . . L̃2(λ)

]
L̃1(λ) ≡ M̃ ′(λ)L̃1(λ). (2.15)

Hence, from (2.14), (2.7) and (2.15) we obtain, with obvious notations:

A(λ) = eix1
[
Ã′(λ)eip1 + B̃ ′(λ)�λei(2x1+p1)

]
e−ix1q−1/4. (2.16)

The factor e−ix1 commutes with Ã′(λ) and B̃ ′(λ) because these depend only on the ultralocal
variables of the sites 2, . . . , N . The exchange with the other factors in the square bracket is
regulated by (1.14) and produces

A(λ) = q1/2Ã(λ). (2.17)

The same procedure applied to the other elements of M and M̃ gives

D(λ) = q1/2D̃(λ) (2.18)

B(λ) = q1/2e2ix1B̃(λ) C(λ) = q1/2e−2ix1C̃(λ). (2.19)

Let us finally remark that from (2.17) and (2.18) it follows that

τ̃ (λ) = Ã(λ) + D̃(λ) = q−1/2[A(λ) + D(λ)] = q−1/2τ(λ) (2.20)

i.e. the transfer matrix τ̃ (λ) = Tr M̃(λ) is proportional to the transfer matrix τ(λ) ≡ Tr M(λ).
Hence τ̃ describes the same observables as τ , with the advantage, however, of coming
from a monodromy matrix made up of ultralocal site operators. Since B, B̃ and C, C̃ are
respectively different, the diagonalizations of τ and τ̃ by means of algebraic Bethe ansatz
are made, in principle, on different (but related) vector spaces. In [7] we diagonalized τ

and conjectured that it describes, in the continuum limit, the left sector of minimal CFTs
on a cylinder. In a forthcoming publication [16] we will write the Bethe equations and the
eigenvalues/eigenvectors of the transfer matrix τ̃ and we will show that they coincide with the
homonymous quantities in the Liouville model [17]. We will also disentangle the comparison
between the eigenvectors of τ and τ̃ .

We are going to repeat the unbraiding procedure, making use of the right Lax operators
L̄m(λ) (1.11). At first, we write L̄m(λ) in terms of ultralocal operators. Using (1.15) we have
that

L̄m(λ) =
(

ei(xm−xm+1+pm) �λei(xm−xm+1−pm)

�λe−i(xm−xm+1−pm) e−i(xm−xm+1+pm)

)
= D−1

m+1Ūm(λ) (2.21)

where Dm is still given by (2.2) and

Ūm(λ) ≡
(

ei(xm+pm) �λei(xm−pm)

�λe−i(xm−pm) e−i(xm+pm)

)
. (2.22)
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It is evident that Ūm(λ) depends only on ultralocal site variables and hence that formula (2.21)
decomposes the right Lax operator into its ultralocal components. Decomposition (2.21) allows
us to rewrite the right monodromy matrix (1.8) as follows:

M̄(λ) = L̄N(λ
−1)L̄N−1(λ

−1) . . . L̄2(λ
−1)L̄1(λ

−1)

= [D−1
1 ŪN(λ

−1)] [D−1
N ŪN−1(λ

−1)] . . . [D−1
3 Ū2(λ

−1)] [D−1
2 Ū1(λ

−1)]

= D−1
1 [ŪN(λ

−1)D−1
N ] [ŪN−1(λ

−1)D−1
N−1] . . . [Ū2(λ

−1)D−1
2 ] [Ū1(λ

−1)D−1
1 ]D1.

This means that the matrix
˜̄M(λ) ≡ D1M̄(λ)D−1

1 (2.23)

can be written as
˜̄M(λ) = ˜̄LN(λ

−1) ˜̄LN−1(λ
−1) . . . ˜̄L2(λ

−1) ˜̄L1(λ
−1) (2.24)

in terms of the ultralocal operators

˜̄Lm(λ) ≡ Ūm(λ)D
−1
m = q1/4

(
eipm �λei(2xm−pm)

�λe−i(2xm−pm) e−ipm

)
. (2.25)

From this realization of the operators ˜̄Lm(λ) and from commutation relations (1.14) the Yang–
Baxter relation follows:

Rab

(
λ

λ′

)
˜̄Lam

(
1

λ

)
˜̄Lbm

(
1

λ′

)
= ˜̄Lbm

(
1

λ′

)
˜̄Lam

(
1

λ

)
Rab

(
λ

λ′

)
. (2.26)

Since ˜̄Lm are ultralocal, the Yang–Baxter relation is also true for the matrix ˜̄M:

Rab

(
λ

λ′

)
˜̄Ma(λ)

˜̄Mb(λ
′) = ˜̄Mb(λ

′) ˜̄Ma(λ)Rab

(
λ

λ′

)
(2.27)

and gives rise to the commutativity of the transfer matrix ˜̄τ(λ) ≡ Tr ˜̄M(λ) with itself for
different values of the spectral parameter:

[ ˜̄τ(λ), ˜̄τ(λ′)] = 0. (2.28)

The unbraided monodromy matrix ˜̄M is directly connected to the right conformal

monodromy matrix M̄ by (2.23). More explicitly, the matrix elements of M̄ and ˜̄M:

M̄(λ) ≡
(
Ā(λ) B̄(λ)

C̄(λ) D̄(λ)

)
˜̄M(λ) ≡

( ˜̄A(λ) ˜̄B(λ)
˜̄C(λ) ˜̄D(λ)

)
(2.29)

are related in this way:

Ā(λ) = e−ix1 ˜̄A(λ)eix1 B̄(λ) = e−ix1 ˜̄B(λ)e−ix1

C̄(λ) = eix1 ˜̄C(λ)eix1 D̄(λ) = eix1 ˜̄D(λ)e−ix1 . (2.30)

Using the same technique as before—equations (2.15) and (2.16)—we simplify (2.30) to

Ā(λ) = q−1/2 ˜̄A(λ) D̄(λ) = q−1/2 ˜̄D(λ) (2.31)

B̄(λ) = q−1/2e−2ix1 ˜̄B(λ) C̄(λ) = q−1/2e2ix1 ˜̄C(λ). (2.32)

In conclusion, we have that

˜̄τ(λ) = ˜̄A(λ) + ˜̄D(λ) = q1/2[Ā(λ) + D̄(λ)] = q1/2τ̄ (λ) (2.33)

i.e. the transfer matrix ˜̄τ(λ) = Tr ˜̄M(λ) is proportional to the transfer matrix τ̄ (λ) ≡ Tr M̄(λ)

and hence describes the same observables. We can comment on these results concerning the
right sector in the same way we have done for those about the left one, simply turning the word
‘left’ into ‘right’.
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3. From the braided to the usual Yang–Baxter relation: off-critical case

We now want to extend our unbraiding procedure by connecting the off-critical monodromy
matrix M (1.9) with a suitable monodromy matrix satisfying the Yang–Baxter relation.
Following what we have just done in the conformal case, we want to write (1.9) in terms
of ultralocal operators. Decomposition (2.1) for Lm and decomposition (2.21) for L̄m give

M(λ) = [D−1
1 ŪN(µ

1/2λ−1)] [D−1
N ŪN−1(µ

1/2λ−1)][DN−1UN−2(µ
1/2λ)]

×[DN−2UN−3(µ
1/2λ)] · · · [D−1

5 Ū4(µ
1/2λ−1)] [D−1

4 Ū3(µ
1/2λ−1)]

×[D3U2(µ
1/2λ)] [D2U1(µ

1/2λ)] (3.1)

= D−1
1 [ŪN(µ

1/2λ−1)D−1
N ] [ŪN−1(µ

1/2λ−1)DN−1][UN−2(µ
1/2λ)DN−2]

×[UN−3(µ
1/2λ)D−1

N−3] · · · [Ū4(µ
1/2λ−1)D−1

4 ] [Ū3(µ
1/2λ−1)D3]

×[U2(µ
1/2λ)D2] [U1(µ

1/2λ)D−1
1 ]D1.

This means that the matrix

M̃(λ) ≡ D1 M(λ)D−1
1 (3.2)

can be written as

M̃(λ) =
N/4←∏
i=1

˜̄L4i (µ
1/2λ−1) ˜̄L′4i−1(µ

1/2λ−1)L̃4i−2(µ
1/2λ)L̃′4i−3(µ

1/2λ) (3.3)

in terms of the ultralocal operators (2.6) and (2.25) and

˜̄L′4i−1(λ) ≡ Ū4i−1(λ)D4i−1 (3.4)

L̃′4i−3(λ) ≡ U4i−3(λ)D
−1
4i−3. (3.5)

The new operators (3.4) and (3.5) inherit the realization

˜̄L′m(λ) = q−1/4

(
ei(2xm+pm) �λe−ipm

�λeipm e−i(2xm+pm)

)
(3.6)

L̃′m(λ) = q1/4

(
e−i(2xm−pm) �λe−ipm

�λeipm ei(2xm−pm)

)
. (3.7)

We already know—formulae (2.8) and (2.26)—that operators L̃m(λ) and ˜̄Lm(λ
−1) satisfy

the Yang–Baxter relation and this is also true for operators L̃′m(λ) and ˜̄L′m(λ−1), from direct
calculation which uses (3.6) and (3.7). Since all these operators are ultralocal, the unbraided
matrix M̃(λ) also satisfies the Yang–Baxter relation

Rab

(
λ

λ′

)
M̃a(λ)M̃b(λ

′) = M̃b(λ
′)M̃a(λ)Rab

(
λ

λ′

)
(3.8)

and produces a transfer matrix t̃(λ) ≡ Tr M̃(λ) commuting with itself for different values of
the spectral parameter:

[t̃(λ), t̃(λ′)] = 0. (3.9)

Now, we analyse in more detail the relation between the off-critical monodromy matrix
M and the monodromy matrix M̃ . From formula (3.2) it follows that this relation formally

coincides with relation (2.23) between M̄ and ˜̄M . Therefore, we need to rewrite properly (2.30)
in the form:

A(λ) = e−ix1Ã(λ)eix1 B(λ) = e−ix1B̃(λ)e−ix1 (3.10)

C(λ) = eix1C̃(λ)eix1 D(λ) = eix1D̃(λ)e−ix1 . (3.11)
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Besides, as in that case we can exchange the factors e±ix1 with the elements Ã, B̃, C̃, D̃ of
M̃ :

A(λ) = q−1/2Ã(λ) D(λ) = q−1/2D̃(λ) (3.12)

B(λ) = q−1/2e−2ix1B̃(λ) C(λ) = q−1/2e2ix1C̃(λ). (3.13)

As in the conformal case, we remark that t(λ) ≡ Tr M(λ) and t̃(λ) = Tr M̃(λ) are
proportional:

t̃(λ) = q1/2t(λ). (3.14)

Hence they describe the same observables. Likewise, since B, B̃ and C, C̃ are different, the
diagonalization of t and t̃ by means of Bethe ansatz is made, in principle, on different (but
related) vector spaces. In [7] we diagonalized t and conjectured that it describes, in the cylinder
continuum limit, minimal CFTs perturbed by the �1,3 primary operator. In a forthcoming
publication [16] we will write the Bethe equations and the eigenvalues/eigenvectors of the
transfer matrix t̃ and we will show that they coincide with the Bethe equations and the
eigenvalues/eigenvectors of the transfer matrix for the lattice sine-Gordon model [18]. Since
minimal CFTs perturbed by �1,3 are a restriction of the sine-Gordon model [13], the Bethe
ansatz construction of the eigenvectors of t and t̃ will be useful to prove our conjecture.

Eventually, we give briefly analogous results for the other off-critical monodromy
matrix (1.10) with entries defined by

M ′(λ) ≡
(

A′(λ) B′(λ)
C ′(λ) D′(λ)

)
. (3.15)

Through the same unbraiding procedure we end up with a monodromy matrix built up by
ultralocal site operators:

M̃ ′(λ) ≡ D−1
1 M ′(λ)D1 (3.16)

which can be written as follows:

M̃ ′(λ) =
N/4←∏
i=1

L̃4i (µ
1/2λ)L̃′4i−1(µ

1/2λ) ˜̄L4i−2(µ
1/2λ−1) ˜̄L′4i−3(µ

1/2λ−1). (3.17)

Likewise, the matrix M̃ ′(λ) satisfies the Yang–Baxter relation and the connection between its
entries and those of the monodromy matrix M ′(λ) can be written down explicitly:

A′(λ) = q1/2Ã′(λ) D′(λ) = q1/2D̃′(λ) (3.18)

B′(λ) = q1/2e2ix1B̃′(λ) C ′(λ) = q1/2e−2ix1C̃ ′(λ). (3.19)

Therefore, t′(λ) ≡ Tr M ′(λ) and t̃′(λ) ≡ Tr M̃ ′(λ) are proportional,

t̃′(λ) = q−1/2t′(λ) (3.20)

and consequently describe the same observables. In a forthcoming publication [16] we will
write the Bethe equations and the eigenvalues/eigenvectors of t̃′ and we will show that they
coincide with the homonymous quantities for t̃ and hence with the homonymous quantities for
the lattice sine-Gordon model [18].

Observation. It is important to remark that the existence of the ultralocal Lax operators (2.7)
and (2.25), satisfying the Yang–Baxter relations (2.8) and (2.26), allows us to define, if N is
even, the factorized monodromy matrix

MF (λ) = L̃N(µ
1/2λ)L̃N−2(µ

1/2λ) . . . L̃4(µ
1/2λ)L̃2(µ

1/2λ)

× ˜̄LN−1(µ
1/2λ−1) ˜̄LN−3(µ

1/2λ−1) . . . ˜̄L3(µ
1/2λ−1) ˜̄L1(µ

1/2λ−1) (3.21)
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which satisfies the Yang–Baxter relation:

Rab

(
λ

λ′

)
MF

a (λ)M
F
b (λ

′) =MF
b (λ

′)MF
a (λ)Rab

(
λ

λ′

)
. (3.22)

The matrix (3.21) is made up of two parts. The left part contains only operators L̃2m on even

sites, the right part only operators ˜̄L2m+1 on odd sites. From formulae (2.1), (2.6), (2.21)

and (2.25) it follows that L̃2m = D−1
2m+1L2mD2m and that ˜̄L2m+1 = D2m+2L̄2m+1D

−1
2m+1, where

Dm, given by (2.2), is a simple diagonal matrix. Since in the scaling limit left and right Lax
operators L2m and L̄2m+1 become completely chiral and antichiral respectively (see section 9
of [7]), in the same limit matrix (3.21) is the product of two matrices, one depending mainly
on the Feigin–Fuks boson φ, the other depending mainly on φ̄. These matrices, however,
are not completely chiral, because of the presence of the diagonal matrices Dm inside them.
Nevertheless, directly in the scaling limit (�→ 0) a chiral part by anti–chiral part factorized
monodromy matrix was also discovered in [9] to satisfy the Yang–Baxter relation. Apparently,
that matrix is slightly different from the scaling limit of (3.21) and from the lattice we did not
find, now, any way to reproduce exactly that matrix, preserving the Yang–Baxter relation.
Therefore, in order to compare our factorized monodromy matrix with that in [9], we need to
diagonalize by means of algebraic Bethe ansatz the transfer matrix tF (λ) ≡ Tr MF (λ), which,
as a consequence of (3.22), commutes for different values of the spectral parameter. This will
be the issue of a forthcoming publication [16].

4. Perspectives

We have found a Yang–Baxter relation in theories controlled by a braided Yang–Baxter algebra,
working out the construction in physical examples involving the lattice (m)KdV theory as the
main ingredient. Since this theory is the prototype of non-ultralocal theories and we have gone
from non-ultralocal commutators to ultralocal ones, our treatment is completely general for
what concerns lattice theories (and their continuum limit). For instance, our method could
be applied to the quantum theory described in [19]—which exhausts all the other integrable
perturbations of minimal CFTs—or toW3 symmetric CFTs [20] as described in [21]. Moreover,
this unbraiding transformation has also been formulated under a general point of view, giving
rise to an algebra isomorphism provided a matrix D, satisfying suitable conditions, exists.
In the next future the proposed unbraided monodromy matrices—especially the factorized
monodromy matrix—will be worthy of being investigated. Indeed, we will better understand
the spectrum of braided and unbraided theories by comparing the algebraic Bethe ansatz
representations [16]. In this way it will also be possible to perform the (cylinder) continuum
limit and obtain the spectrum of field theories (in finite volume, i.e. at finite temperature).

DF is grateful to F Colomo, E Ercolessi and M Stanishkov for discussions and thanks EPRSC
for grant GR/M66370. MR thanks EPRSC for grant GR/M97497. This work has been partially
supported by EC TMR contract ERBFMRXCT960012.
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